Yang-Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space

Результат исследований: Материалы для журналаСтатья

2 Цитирования (Scopus)

Аннотация

We consider the Dirac equation with an external Yang-Mills gauge field in a homogeneous space with an invariant metric. The Yang-Mills fields for which the motion group of the space serves as the symmetry group for the Dirac equation are found by comparison of the Dirac equation with an invariant matrix differential operator of the first order. General constructions are illustrated by the example of de Sitter space. The eigenfunctions and the corresponding eigenvalues for the Dirac equation are obtained in the space R<sup>2</sup> × S<sup>2</sup> by a noncommutative integration method.

Язык оригиналаАнглийский
Номер статьи012004
ЖурналJournal of Physics: Conference Series
Том563
Номер выпуска1
DOI
СостояниеОпубликовано - 26 ноя 2014

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Yang-Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать