Web-GIS platform for forest fire danger prediction in Ukraine: Prospects of RS technologies

N. V. Baranovskiy, M. V. Zharikova

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

1 Цитирования (Scopus)

Аннотация

There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).

Язык оригиналаАнглийский
Название основной публикацииRemote Sensing of Clouds and the Atmosphere XXI
ИздательSPIE
Том10001
ISBN (электронное издание)9781510604063
DOI
СостояниеОпубликовано - 2016
СобытиеRemote Sensing of Clouds and the Atmosphere XXI - Edinburgh, Великобритания
Продолжительность: 28 сен 201629 сен 2016

Конференция

КонференцияRemote Sensing of Clouds and the Atmosphere XXI
СтранаВеликобритания
ГородEdinburgh
Период28.9.1629.9.16

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Подробные сведения о темах исследования «Web-GIS platform for forest fire danger prediction in Ukraine: Prospects of RS technologies». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Baranovskiy, N. V., & Zharikova, M. V. (2016). Web-GIS platform for forest fire danger prediction in Ukraine: Prospects of RS technologies. В Remote Sensing of Clouds and the Atmosphere XXI (Том 10001). [100010Y] SPIE. https://doi.org/10.1117/12.2241670