Variational problem for Hamiltonian system on so(k, m)Lie-Poisson manifold and dynamics of semiclassical spin

A. A. Deriglazov

Результат исследований: Материалы для журналаСтатья

2 Цитирования (Scopus)

Аннотация

We describe the procedure for obtaining Hamiltonian equations on a manifold with so(k, m) Lie-Poisson bracket from a variational problem. This implies identification of the manifold with base of a properly constructed fiber bundle embedded as a surface into the phase space with canonical Poisson bracket. Our geometric construction underlies the formalism used for construction of spinning particles in [A. A. Deriglazov, Mod. Phys. Lett. A 28, 1250234 (2013); Ann. Phys. 327, 398 (2012); Phys. Lett. A 376, 309 (2012)], and gives precise mathematical formulation of the oldest idea about spin as the "inner angular momentum".

Язык оригиналаАнглийский
Номер статьи1450048
ЖурналModern Physics Letters A
Том29
Номер выпуска10
DOI
СостояниеОпубликовано - 1 янв 2014

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Astronomy and Astrophysics

Fingerprint Подробные сведения о темах исследования «Variational problem for Hamiltonian system on so(k, m)Lie-Poisson manifold and dynamics of semiclassical spin». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать