The one-dimensional Fisher-Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation

Результат исследований: Материалы для журналаСтатья

20 Цитирования (Scopus)

Аннотация

A model of the evolution of a bacterium population based on the Fisher-Kolmogorov equation is considered. For a one-dimensional equation of the Fisher-Kolmogorov type that contains quadratically nonlinear nonlocal kinetics and weak diffusion terms, a general scheme of semiclassically concentrated asymptotic solutions is developed based on the complex WKB-Maslov method. The solution of the Cauchy problem is constructed in the class of semiclassically concentrated functions. In constructing the solutions, an essential part is played by the dynamic set of Einstein-Ehrenfest equations (a set of equations in average and centered moments) derived in this work. The symmetry operators of the equation, the nonlinear evolution operator, and the class of particular asymptotic semiclassical solutions are found.

Язык оригиналаАнглийский
Страницы (с-по)899-911
Число страниц13
ЖурналRussian Physics Journal
Том52
Номер выпуска9
DOI
СостояниеОпубликовано - 1 дек 2009

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «The one-dimensional Fisher-Kolmogorov equation with a nonlocal nonlinearity in a semiclassical approximation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать