Аннотация
We consider a Hamiltonian formulation of the (2. n+. 1)-order generalization of the Pais-Uhlenbeck oscillator with distinct frequencies of oscillation. This system is invariant under time translations. However, the corresponding Noether integral of motion is unbounded from below and can be presented as a direct sum of 2n one-dimensional harmonic oscillators with an alternating sign. If this integral of motion plays a role of a Hamiltonian, a quantum theory of the Pais-Uhlenbeck oscillator faces a ghost problem. We construct an alternative canonical formulation for the system under study to avoid this nasty feature.
Язык оригинала | Английский |
---|---|
Страницы (с-по) | 495-508 |
Число страниц | 14 |
Журнал | Nuclear Physics B |
Том | 907 |
DOI | |
Состояние | Опубликовано - 1 июн 2016 |
ASJC Scopus subject areas
- Nuclear and High Energy Physics