The Gruneisen parameter for silver azide

Yu N. Zhuravlyov, V. M. Lisitsyn

Результат исследований: Материалы для журналаСтатья

1 цитирование (Scopus)

Выдержка

A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter γ0 for various cold equations of state of crystals and for the thermodynamic models used are, respectively, ~2. 3 and 1. 6.

Язык оригиналаАнглийский
Страницы (с-по)765-772
Число страниц8
ЖурналRussian Physics Journal
Том54
Номер выпуска7
DOI
СостояниеОпубликовано - ноя 2011

Отпечаток

silver
thermodynamics
crystals
equations of state
density functional theory
orbitals
vibration
gradients
cells
approximation

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Цитировать

The Gruneisen parameter for silver azide. / Zhuravlyov, Yu N.; Lisitsyn, V. M.

В: Russian Physics Journal, Том 54, № 7, 11.2011, стр. 765-772.

Результат исследований: Материалы для журналаСтатья

Zhuravlyov, Yu N. ; Lisitsyn, V. M. / The Gruneisen parameter for silver azide. В: Russian Physics Journal. 2011 ; Том 54, № 7. стр. 765-772.
@article{ca622c24f2ac49c1aeb1ab39af5b7e42,
title = "The Gruneisen parameter for silver azide",
abstract = "A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter γ0 for various cold equations of state of crystals and for the thermodynamic models used are, respectively, ~2. 3 and 1. 6.",
keywords = "compression modulus, entropy, equation of state, Gruneisen parameter, mode parameter, pressure, silver azide, specific heat",
author = "Zhuravlyov, {Yu N.} and Lisitsyn, {V. M.}",
year = "2011",
month = "11",
doi = "10.1007/s11182-011-9681-5",
language = "English",
volume = "54",
pages = "765--772",
journal = "Russian Physics Journal",
issn = "1064-8887",
publisher = "Consultants Bureau",
number = "7",

}

TY - JOUR

T1 - The Gruneisen parameter for silver azide

AU - Zhuravlyov, Yu N.

AU - Lisitsyn, V. M.

PY - 2011/11

Y1 - 2011/11

N2 - A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter γ0 for various cold equations of state of crystals and for the thermodynamic models used are, respectively, ~2. 3 and 1. 6.

AB - A first-principle procedure is proposed to determine the Gruneisen parameter for a crystal by calculating the external pressure and the vibration spectrum as functions of the volume of a unit cell. In the gradient approximation of the electron density functional theory, on the basis of a linear combination of atomic orbitals, the elastic and the thermodynamic Gruneisen parameters of silver azide, which decrease with volume (with increasing pressure), are calculated with the use of the CRYSTAL09 code. The equilibrium values of the parameter γ0 for various cold equations of state of crystals and for the thermodynamic models used are, respectively, ~2. 3 and 1. 6.

KW - compression modulus

KW - entropy

KW - equation of state

KW - Gruneisen parameter

KW - mode parameter

KW - pressure

KW - silver azide

KW - specific heat

UR - http://www.scopus.com/inward/record.url?scp=83555161639&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=83555161639&partnerID=8YFLogxK

U2 - 10.1007/s11182-011-9681-5

DO - 10.1007/s11182-011-9681-5

M3 - Article

AN - SCOPUS:83555161639

VL - 54

SP - 765

EP - 772

JO - Russian Physics Journal

JF - Russian Physics Journal

SN - 1064-8887

IS - 7

ER -