The Gross-Pitaevskii equation with a nonlocal interaction in a semiclassical approximation on a curve

Результат исследований: Материалы для журналаСтатьярецензирование

Аннотация

We propose an approach to constructing semiclassical solutions for the generalized multidimensional Gross-Pitaevskii equation with a nonlocal interaction term. The key property of the solutions is that they are concentrated on a one-dimensional manifold (curve) that evolves over time. The approach reduces the Cauchy problem for the nonlocal Gross-Pitaevskii equation to a similar problem for the associated linear equation. The geometric properties of the resulting solutions are related to Maslov's complex germ, and the symmetry operators of the associated linear equation lead to the approximation of the symmetry operators for the nonlocal Gross-Pitaevskii equation.

Язык оригиналаАнглийский
Номер статьи201
ЖурналSymmetry
Том12
Номер выпуска2
DOI
СостояниеОпубликовано - 1 фев 2020

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • Mathematics(all)
  • Physics and Astronomy (miscellaneous)

Fingerprint Подробные сведения о темах исследования «The Gross-Pitaevskii equation with a nonlocal interaction in a semiclassical approximation on a curve». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать