The efficiency of heat transfer through the ash deposits on the heat exchange surfaces by burning coal and coal-water fuels

Результат исследований: Материалы для журналаСтатья

9 Цитирования (Scopus)

Аннотация

The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (t ≥ 1.5 h) of the boiler unit. According to the results the numerical simulation of the temperature distributions in the system “pipeline environment — pipe wall — a layer of ash — the products of combustion” have been obtained. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.

Язык оригиналаАнглийский
Страницы (с-по)1091-1101
Число страниц11
ЖурналJournal of the Energy Institute
Том91
Номер выпуска6
DOI
СостояниеОпубликовано - 1 дек 2018

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint Подробные сведения о темах исследования «The efficiency of heat transfer through the ash deposits on the heat exchange surfaces by burning coal and coal-water fuels». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать