Symmetry operators of the two-component Gross - Pitaevskii equation with a Manakov-type nonlocal nonlinearity

Результат исследований: Материалы для журналаСтатья

1 Цитирования (Scopus)

Аннотация

We consider an integro-differential 2-component multidimensional Gross-Pitaevskii equation with a Manakov-type cubic nonlocal nonlinearity. In the framework of the WKB-Maslov semiclassical formalism, we obtain a semiclassically reduced 2-component nonlocal Gross- Pitaevskii equation determining the leading term of the semiclassical asymptotic solution. For the reduced Gross-Pitaevskii equation we construct symmetry operators which transform arbitrary solution of the equation into another solution. Constructing the symmetry operator is based on the Cauchy problem solution technique and uses an intertwining operator which connects two solutions of the reduced Gross-Pitaevskii equation. General structure of the symmetry operator is illustrated with a 1D case for which a family of symmetry operators is found explicitly and a set of exact solutions is generated.

Язык оригиналаАнглийский
Номер статьи012046
ЖурналJournal of Physics: Conference Series
Том670
Номер выпуска1
DOI
СостояниеОпубликовано - 25 янв 2016

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Symmetry operators of the two-component Gross - Pitaevskii equation with a Manakov-type nonlocal nonlinearity». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать