Symmetry Operators of the Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation with a Quadratic Operator

Результат исследований: Материалы для журналаСтатья

2 Цитирования (Scopus)

Аннотация

A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.

Язык оригиналаАнглийский
Страницы (с-по)1415-1426
Число страниц12
ЖурналRussian Physics Journal
Том56
Номер выпуска12
DOI
СостояниеОпубликовано - 2014

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Symmetry Operators of the Nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov Equation with a Quadratic Operator». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать