Symmetry and intertwining operators for the nonlocal gross-pitaevskii equation

Результат исследований: Материалы для журналаСтатья

9 Цитирования (Scopus)


We consider the symmetry properties of an integro-differential multidimensional Gross-Pitaevskii equation with a non local nonlinear (cubic) term in the context of symmetry analysis using the formalism of semi classical asymptotics. This yields a semi classically reduced non local Gross-Pitaevskii equation, which can be treated as a nearly linear equation, to determine the principal term of the semi classical asymptotic solution. Our main result is an approach which allows one to construct a class of symmetry operators for the reduced Gross-Pitaevskii equation. These symmetry operators are determined by linear relations including intertwining operators and additional algebraic conditions. The basic ideas are illustrated with a 1D reduced Gross-Pitaevskii equation. The symmetry operators are found explicitly, and the corresponding families of exact solutions are obtained.

Язык оригиналаАнглийский
Номер статьи066
ЖурналSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
СостояниеОпубликовано - 6 ноя 2013

ASJC Scopus subject areas

  • Analysis
  • Geometry and Topology
  • Mathematical Physics

Fingerprint Подробные сведения о темах исследования «Symmetry and intertwining operators for the nonlocal gross-pitaevskii equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать