Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation

Результат исследований: Материалы для журналаСтатья

7 Цитирования (Scopus)

Аннотация

The classical group analysis approach used to study the symmetries of integro-differential equations in a semiclassical approximation is considered for a class of nearly linear integro-differential equations. In a semiclassical approximation, an original integro-differential equation leads to a finite consistent system of differential equations whose symmetries can be calculated by performing standard group analysis.The approach is illustrated by the calculation of the Lie symmetries in explicit form for a special case of the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov population equation.

Язык оригиналаАнглийский
Страницы (с-по)716-726
Число страниц11
ЖурналJournal of Mathematical Analysis and Applications
Том395
Номер выпуска2
DOI
СостояниеОпубликовано - 15 ноя 2012

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Fingerprint Подробные сведения о темах исследования «Symmetries of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with a nonlocal nonlinearity in a semiclassical approximation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать