Structural phase changes in a titanium-silicon system modified by high-current electron beams and compression plasma flows

Vladimir Vasilevich Uglov, N. T. Kvasov, Yu A. Petukhov, R. S. Kudaktin, N. N. Koval', Yu F. Ivanov, A. D. Teresov, V. M. Astashinskii, A. M. Kuz'mitskii

Результат исследований: Материалы для журналаСтатья

3 Цитирования (Scopus)

Аннотация

Structural phase changes in a titanium-silicon system treated by low-energy high-current electron beams (HCEBs) and compression plasma flows (CPFs) with the duration 100 μs and the energy density 12-15 J/cm 2 are studied. Scanning electron microscopy, X-ray diffraction and electron microprobe analysis are used in this work. The formation of a titanium-doped silicon layer 10-25 μm thick, titanium silicides (TiSi 2 under HCEBs and Ti 5Si 3 under CPF treatment), silicon dendrites, and needle-like eutectics (typical size of precipitates is about 50 nm) is revealed. It is shown via the results of numerical simulation that the thickness of the metal-doped layer is mainly controlled by the power density value and the surface nonuniformity of the heat flow over the target surface. The thermodynamic regularities of phase formation are discussed, taking into account heat transfer between the silicide nuclei and solid silicon.

Язык оригиналаАнглийский
Страницы (с-по)296-302
Число страниц7
ЖурналJournal of Surface Investigation
Том6
Номер выпуска2
DOI
СостояниеОпубликовано - 1 апр 2012

ASJC Scopus subject areas

  • Surfaces, Coatings and Films

Fingerprint Подробные сведения о темах исследования «Structural phase changes in a titanium-silicon system modified by high-current electron beams and compression plasma flows». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Uglov, V. V., Kvasov, N. T., Petukhov, Y. A., Kudaktin, R. S., Koval', N. N., Ivanov, Y. F., Teresov, A. D., Astashinskii, V. M., & Kuz'mitskii, A. M. (2012). Structural phase changes in a titanium-silicon system modified by high-current electron beams and compression plasma flows. Journal of Surface Investigation, 6(2), 296-302. https://doi.org/10.1134/S1027451012040180