Spinning extensions of D(2, 1; α) superconformal mechanics

Anton Galajinsky, Olaf Lechtenfeld

Результат исследований: Материалы для журналаСтатья

3 Цитирования (Scopus)

Аннотация

As is known, any realization of SU(2) in the phase space of a dynamical system can be generalized to accommodate the exceptional supergroup D(2, 1; α), which is the most general N = 4 supersymmetric extension of the conformal group in one spatial dimension. We construct novel spinning extensions of D(2, 1; α) superconformal mechanics by adjusting the SU(2) generators associated with the relativistic spinning particle coupled to a spherically symmetric Einstein-Maxwell background. The angular sector of the full superconformal system corresponds to the orbital motion of a particle coupled to a symmetric Euler top, which represents the spin degrees of freedom. This particle moves either on the two-sphere, optionally in the external field of a Dirac monopole, or in the SU(2) group manifold. Each case is proven to be superintegrable, and explicit solutions are given.

Язык оригиналаАнглийский
Номер статьи69
ЖурналJournal of High Energy Physics
Том2019
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мар 2019

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Подробные сведения о темах исследования «Spinning extensions of D(2, 1; α) superconformal mechanics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать