Schwarzian mechanics via nonlinear realizations

Результат исследований: Материалы для журналаСтатья

1 Цитирования (Scopus)

Аннотация

The method of nonlinear realizations is used to clarify some conceptual and technical issues related to the Schwarzian mechanics. It is shown that the Schwarzian derivative arises naturally, if one applies the method to SL(2,R)×R group and decides to keep the number of the independent Goldstone fields to a minimum. The Schwarzian derivative is linked to the invariant Maurer–Cartan one–forms, which make its SL(2,R)–invariance manifest. A Lagrangian formulation for a variant of the Schwarzian mechanics studied recently in A. Galajinsky (2018) [5] is built and its geometric description in terms of 4d metric of the ultrahyperbolic signature is given.

Язык оригиналаАнглийский
Страницы (с-по)277-280
Число страниц4
ЖурналPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Том795
DOI
СостояниеОпубликовано - 10 авг 2019

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Подробные сведения о темах исследования «Schwarzian mechanics via nonlinear realizations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать