Schrödinger potentials solvable in terms of the general Heun functions

A. M. Ishkhanyan

Результат исследований: Материалы для журналаСтатьярецензирование

30 Цитирования (Scopus)

Аннотация

We show that there exist 35 choices for the coordinate transformation each leading to a potential for which the stationary Schrödinger equation is exactly solvable in terms of the general Heun functions. Because of the symmetry of the Heun equation with respect to the transposition of its singularities only eleven of these potentials are independent. Four of these independent potentials are always explicitly written in terms of elementary functions, one potential is given through the Jacobi elliptic sn-function, and the others are in general defined parametrically. Nine of the independent potentials possess exactly or conditionally integrable hypergeometric sub-potentials for which each of the fundamental solutions of the Schrödinger equation is written through a single hypergeometric function. Many of the potentials possess sub-potentials for which the general solution is written through fundamental solutions each of which is a linear combination of two or more Gauss hypergeometric functions. We present an example of such a potential which is a conditionally integrable generalization of the third exactly solvable Gauss hypergeometric potential.

Язык оригиналаАнглийский
Страницы (с-по)456-471
Число страниц16
ЖурналAnnals of Physics
Том388
DOI
СостояниеОпубликовано - 1 янв 2018

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Schrödinger potentials solvable in terms of the general Heun functions». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать