Schrödinger Equation with Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces

A. I. Breev

    Результат исследований: Материалы для журналаСтатьярецензирование

    1 Цитирования (Scopus)

    Аннотация

    The Schrödinger equation with nonlocal nonlinearity of convolution type on Lie groups and commutative homogeneous spaces is considered. It is shown that in the special case of an abelian group the Schrödinger equation admits a solution in the form of a superposition of non-interacting solitons. In the case of a commutative homogeneous space, a noncommutative reduction of the Schrödinger equation is carried out. A general solution in the particular case when the nonlinearity factorizes in the spatial variables is found.

    Язык оригиналаАнглийский
    Страницы (с-по)1050-1058
    Число страниц9
    ЖурналRussian Physics Journal
    Том57
    Номер выпуска8
    DOI
    СостояниеОпубликовано - дек 2014

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Fingerprint Подробные сведения о темах исследования «Schrödinger Equation with Convolution Nonlinearity on Lie Groups and Commutative Homogeneous Spaces». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать