Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics

A. V. Krysko, J. Awrejcewicz, I. V. Papkova, V. A. Krysko

Результат исследований: Материалы для журналаСтатьярецензирование

26 Цитирования (Scopus)

Аннотация

In second part of the paper both classical and novel scenarios of transition from regular to chaotic dynamics of dissipative continuous mechanical systems are studied. A detailed analysis allowed us to detect the already known classical scenarios of transition from periodic to chaotic dynamics, and in particular the Feigenbaum scenario. The Feigenbaum constant was computed for all continuous mechanical objects studied in the first part of the paper. In addition, we illustrate and discuss different and novel scenarios of transition of the analysed systems from regular to chaotic dynamics, and we show that the type of scenario depends essentially on excitation parameters.

Язык оригиналаАнглийский
Страницы (с-по)709-720
Число страниц12
ЖурналChaos, Solitons and Fractals
Том45
Номер выпуска6
DOI
СостояниеОпубликовано - 1 июн 2012
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Подробные сведения о темах исследования «Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать