Quantifying chaos by various computational methods. Part 2: Vibrations of the Bernoulli-Euler beam subjected to periodic and colored noise

Jan Awrejcewicz, Anton V. Krysko, Nikolay P. Erofeev, Vitalyi Dobriyan, Marina A. Barulina, Vadim A. Krysko

Результат исследований: Материалы для журналаСтатьярецензирование

9 Цитирования (Scopus)

Аннотация

In this part of the paper, the theory of nonlinear dynamics of flexible Euler-Bernoulli beams (the kinematic model of the first-order approximation) under transverse harmonic load and colored noise has been proposed. It has been shown that the introduced concept of phase transition allows for further generalization of the problem. The concept has been extended to a so-called noise-induced transition, which is a novel transition type exhibited by nonequilibrium systems embedded in a stochastic fluctuated medium, the properties of which depend on time and are influenced by external noise. Colored noise excitation of a structural system treated as a system with an infinite number of degrees of freedom has been studied.

Язык оригиналаАнглийский
Номер статьи170
ЖурналEntropy
Том20
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мар 2018

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Quantifying chaos by various computational methods. Part 2: Vibrations of the Bernoulli-Euler beam subjected to periodic and colored noise». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать