Programming bots by synthesizing natural language expressions into API invocations

Shayan Zamanirad, Boualem Benatallah, Moshe Chai Barukh, Fabio Casati, Carlos Rodriguez

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

19 Цитирования (Scopus)

Аннотация

At present, bots are still in their preliminary stages of development. Many are relatively simple, or developed ad-hoc for a very specific use-case. For this reason, they are typically programmed manually, or utilize machine-learning classifiers to interpret a fixed set of user utterances. In reality, real world conversations with humans require support for dynamically capturing users expressions. Moreover, bots will derive immeasurable value by programming them to invoke APIs for their results. Today, within the Web and Mobile development community, complex applications are being stringed together with a few lines of code - all made possible by APIs. Yet, developers today are not as empowered to program bots in much the same way. To overcome this, we introduce BotBase, a bot programming platform that dynamically synthesizes natural language user expressions into API invocations. Our solution is two faceted: Firstly, we construct an API knowledge graph to encode and evolve APIs; secondly, leveraging the above we apply techniques in NLP, ML and Entity Recognition to perform the required synthesis from natural language user expressions into API calls.

Язык оригиналаАнглийский
Название основной публикацииASE 2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering
РедакторыTien N. Nguyen, Grigore Rosu, Massimiliano Di Penta
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы832-837
Число страниц6
ISBN (электронное издание)9781538626849
DOI
СостояниеОпубликовано - 20 ноя 2017
Событие32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017 - Urbana-Champaign, Соединенные Штаты Америки
Продолжительность: 30 окт 20173 ноя 2017

Серия публикаций

НазваниеASE 2017 - Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering

Конференция

Конференция32nd IEEE/ACM International Conference on Automated Software Engineering, ASE 2017
СтранаСоединенные Штаты Америки
ГородUrbana-Champaign
Период30.10.173.11.17

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Optimization

Fingerprint Подробные сведения о темах исследования «Programming bots by synthesizing natural language expressions into API invocations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать