Poincare covariant mechanics on noncommutative space

Alexei A. Deriglazov

Результат исследований: Материалы для журналаСтатья

7 Цитирования (Scopus)

Выдержка

The Dirac approach to constrained systems can be adapted to construct relativistic invariant theories on a noncommutative (NC) space. As an example, we propose and discuss relativistic invariant NC particle coupled to electromagnetic (EM) field by means of the standard term Aμμ. Poincare invariance implies deformation of the free particle NC algebra in the interaction theory. The corresponding corrections survive in the nonrelativistic limit.

Язык оригиналаАнглийский
Страницы (с-по)431-439
Число страниц9
ЖурналJournal of High Energy Physics
Том7
Номер выпуска3
СостояниеОпубликовано - 1 мар 2003

Отпечаток

invariance
electromagnetic fields
algebra
interactions

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Цитировать

Poincare covariant mechanics on noncommutative space. / Deriglazov, Alexei A.

В: Journal of High Energy Physics, Том 7, № 3, 01.03.2003, стр. 431-439.

Результат исследований: Материалы для журналаСтатья

Deriglazov, AA 2003, 'Poincare covariant mechanics on noncommutative space', Journal of High Energy Physics, том. 7, № 3, стр. 431-439.
Deriglazov, Alexei A. / Poincare covariant mechanics on noncommutative space. В: Journal of High Energy Physics. 2003 ; Том 7, № 3. стр. 431-439.
@article{71ecda535e2640e5b8d8adb401d6fea5,
title = "Poincare covariant mechanics on noncommutative space",
abstract = "The Dirac approach to constrained systems can be adapted to construct relativistic invariant theories on a noncommutative (NC) space. As an example, we propose and discuss relativistic invariant NC particle coupled to electromagnetic (EM) field by means of the standard term Aμẋ μ. Poincare invariance implies deformation of the free particle NC algebra in the interaction theory. The corresponding corrections survive in the nonrelativistic limit.",
keywords = "Gauge Symmetry, Non-Commutative Geometry, Space-Time Symmetries",
author = "Deriglazov, {Alexei A.}",
year = "2003",
month = "3",
day = "1",
language = "English",
volume = "7",
pages = "431--439",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Poincare covariant mechanics on noncommutative space

AU - Deriglazov, Alexei A.

PY - 2003/3/1

Y1 - 2003/3/1

N2 - The Dirac approach to constrained systems can be adapted to construct relativistic invariant theories on a noncommutative (NC) space. As an example, we propose and discuss relativistic invariant NC particle coupled to electromagnetic (EM) field by means of the standard term Aμẋ μ. Poincare invariance implies deformation of the free particle NC algebra in the interaction theory. The corresponding corrections survive in the nonrelativistic limit.

AB - The Dirac approach to constrained systems can be adapted to construct relativistic invariant theories on a noncommutative (NC) space. As an example, we propose and discuss relativistic invariant NC particle coupled to electromagnetic (EM) field by means of the standard term Aμẋ μ. Poincare invariance implies deformation of the free particle NC algebra in the interaction theory. The corresponding corrections survive in the nonrelativistic limit.

KW - Gauge Symmetry

KW - Non-Commutative Geometry

KW - Space-Time Symmetries

UR - http://www.scopus.com/inward/record.url?scp=23044508470&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23044508470&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:23044508470

VL - 7

SP - 431

EP - 439

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 3

ER -