On two-dimensional integrable models with a cubic or quartic integral of motion

Anton Galajinsky, Olaf Lechtenfeld

Результат исследований: Материалы для журналаСтатья

7 Цитирования (Scopus)

Аннотация

Integrable two-dimensional models which possess an integral of motion cubic or quartic in velocities are governed by a single prepotential, which obeys a nonlinear partial differential equation. Taking into account the latter's invariance under continuous rescalings and a dihedral symmetry, we construct new integrable models with a cubic or quartic integral, each of which involves either one or two continuous parameters. A reducible case related to the two-dimensional wave equation is discussed as well. We conjecture a hidden D 2n dihedral symmetry for models with an integral of nth order in the velocities.

Язык оригиналаАнглийский
Номер статьи113
ЖурналJournal of High Energy Physics
Том2013
Номер выпуска9
DOI
СостояниеОпубликовано - 2013

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Подробные сведения о темах исследования «On two-dimensional integrable models with a cubic or quartic integral of motion». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать