On the non-classical mathematical models of coupled problems of thermo-elasticity for multi-layer shallow shells with initial imperfections

V. F. Kirichenko, J. Awrejcewicz, A. V. Kirichenko, A. V. Krysko, V. A. Krysko

Результат исследований: Материалы для журналаСтатья

10 Цитирования (Scopus)

Аннотация

Mathematical modeling of evolutionary states of non-homogeneous multi-layer shallow shells with orthotropic initial imperfections belongs to one of the most important and necessary steps while constructing numerous technical devices, as well as aviation and ship structural members. In first part of the paper fundamental hypotheses are formulated which allow us to derive Hamilton-Ostrogradsky equations. The latter yield equations governing shell behavior within the applied hypotheses and modified Pelekh-Sheremetev conditions. The aim of second part of the paper is to formulate fundamental hypotheses in order to construct coupled boundary problems of thermo-elasticity which are used in non-classical mathematical models for multi-layer shallow shells with initial imperfections. In addition, a coupled problem for multi-layer shell taking into account a 3D heat transfer equation is formulated. Third part of the paper introduces necessary phase spaces for the second boundary value problem for evolutionary equations, defining the coupled problem of thermo-elasticity for a simply supported shallow shell. The theorem regarding uniqueness of the mentioned boundary value problem is proved. It is also proved that the approximate solution regarding the second boundary value problem defining condition for the thermo-mechanical evolution for rectangular shallow homogeneous and isotropic shells can be found using the Bubnov-Galerkin method.

Язык оригиналаАнглийский
Страницы (с-по)51-72
Число страниц22
ЖурналInternational Journal of Non-Linear Mechanics
Том74
DOI
СостояниеОпубликовано - 1 сен 2015
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Applied Mathematics

Fingerprint Подробные сведения о темах исследования «On the non-classical mathematical models of coupled problems of thermo-elasticity for multi-layer shallow shells with initial imperfections». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать