On automatic tuning of basis functions in Bezier method

V. I. Reizlin, A. Y. Demin, S. V. Rybushkina, M. F. Sultanguzin

Результат исследований: Материалы для журналарецензирование

Аннотация

A transition from the fixed basis in Bezier's method to some class of base functions is proposed. A parameter vector of a basis function is introduced as additional information. This achieves a more universal form of presentation and analytical description of geometric objects as compared to the non-uniform rational B-splines (NURBS). This enables control of basis function parameters including control points, their weights and node vectors. This approach can be useful at the final stage of constructing and especially local modification of compound curves and surfaces with required differential and shape properties; it also simplifies solution of geometric problems. In particular, a simple elimination of discontinuities along local spline curves due to automatic tuning of basis functions is demonstrated.

Язык оригиналаАнглийский
Номер статьи012126
ЖурналJournal of Physics: Conference Series
Том803
Номер выпуска1
DOI
СостояниеОпубликовано - 2017
СобытиеInternational Conference on Information Technologies in Business and Industry 2016 - Tomsk, Российская Федерация
Продолжительность: 21 сен 201623 сен 2016

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «On automatic tuning of basis functions in Bezier method». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать