Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups

A. I. Breev, E. A. Mosman

Результат исследований: Материалы для журналаСтатья

Аннотация

The algebra of first-order symmetry operators of the Dirac equation on four-dimensional Lie groups with right-invariant metric is investigated. It is shown that the algebra of symmetry operators is in general not a Lie algebra. Noncommutative reduction mediated by spin symmetry operators is investigated. For the Dirac equation on the Lie group SO(2,1) a parametric family of particular solutions obtained by the method of noncommutative integration over a subalgebra containing a spin symmetry operator is constructed.

Язык оригиналаАнглийский
Страницы (с-по)1153-1163
Число страниц11
ЖурналRussian Physics Journal
Том59
Номер выпуска8
DOI
СостояниеОпубликовано - 1 дек 2016

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать