Non-linear dynamics of flexible curvilinear bernoulli-euler nano-beams in a stationary temperature field

J. Awrejcewicz, I. E. Kutepov, S. P. Pavlov, I. V. Papkova, A. V. Krysko

Результат исследований: Материалы для журналаСтатьярецензирование

Аннотация

In this study the mathematical model of non-linear dynamics of flexible curvilinear beams in a stationary temperature field is proposed. On a basis of the variation principles the PDEs governing nonlinear dynamics of curvilinear nano-beams are derived. The proposed mathematical model does not include any requirements for the temperature distribution along the beam thickness and it is defined via solution to the 2D Laplace equation for the corresponding boundary conditions. The governing PDEs are reduced to ODEs employing the finite difference method of a second order and then the counterpart Cauchy problem has been solved using the 4th order Runge-Kutta method. The convergence of reduction from PDEs to ODEs is validated by the Runge principle. In particular, it has been shown that the solutions obtained taking into account the material nano-structural features are more stable in comparison to the case where the micro-effects are neglected.

Язык оригиналаАнглийский
Страницы (с-по)2079-2084
Число страниц6
ЖурналJournal of Engineering and Applied Sciences
Том11
Номер выпуска9
DOI
СостояниеОпубликовано - 2016

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Подробные сведения о темах исследования «Non-linear dynamics of flexible curvilinear bernoulli-euler nano-beams in a stationary temperature field». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать