Non-Grassmann mechanical model of the Dirac equation

A. A. Deriglazov, B. F. Rizzuti, G. P. Zamudio, P. S. Castro

Результат исследований: Материалы для журналаСтатья

6 Цитирования (Scopus)


We construct a new example of the spinning-particle model without Grassmann variables. The spin degrees of freedom are described on the base of an inner anti-de Sitter space. This produces both Γμ and Γμν-matrices in the course of quantization. Canonical quantization of the model implies the Dirac equation. We present the detailed analysis of both the Lagrangian and the Hamiltonian formulations of the model and obtain the general solution to the classical equations of motion. Comparing Zitterbewegung of the spatial coordinate with the evolution of spin, we ask on the possibility of space-time interpretation for the inner space of spin. We enumerate similarities between our analogous model of the Dirac equation and the two-body system subject to confining potential which admits only the elliptic orbits of the order of de Broglie wavelength. The Dirac equation dictates the perpendicularity of the elliptic orbits to the direction of center-of-mass motion.

Язык оригиналаАнглийский
Номер статьи122303
ЖурналJournal of Mathematical Physics
Номер выпуска12
СостояниеОпубликовано - 19 дек 2012
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Подробные сведения о темах исследования «Non-Grassmann mechanical model of the Dirac equation». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Deriglazov, A. A., Rizzuti, B. F., Zamudio, G. P., & Castro, P. S. (2012). Non-Grassmann mechanical model of the Dirac equation. Journal of Mathematical Physics, 53(12), [122303].