Networkalization of network–unlike entities: How to preserve encoded information

Olga Berestneva, Olga Marukhina, Alessandra Rossodivita, Alexei Tikhomirov, Andrey Trufanov

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

Аннотация

More than for twenty years network science with complex networks as its basic component has brought the idea to analyze a wide spectrum of entities through a focus on relations between the actors and has implemented the concomitant powerful instruments of the analysis. Some entities (objects, processes, and data) with their intrinsic web nature might be interpreted as networks naturally. Network ontology of another family, Network–Unlike Entities, e.g. spatial and temporal ones, is severely ambiguous and encounters with tough problems on the way to convert data into networks. We concentrate on separation the properties of data in line with their scale diversity – in the distance, time, and nature and suggested a 3 step algorithm (scale-based technique) to convert Network–Unlike Entities into complex networks. The technique was applied for networkalization of landscape and land use maps representing Olkhon district, Irkutsk region, Baikal Lake territory, RF. It was found that the technique with its coarse-graining and area-like connecting conserves natural information inherent to the entities and imbeds accordingly scale-free and small world properties into output networks, thus making them really complex in their structure.

Язык оригиналаАнглийский
Название основной публикацииCreativity in Intelligent Technologies and Data Science - 3rd Conference, CIT and DS 2019, Proceedings
РедакторыAlla G. Kravets, Peter P. Groumpos, Maxim Shcherbakov, Marina Kultsova
ИздательSpringer Verlag
Страницы143-151
Число страниц9
ISBN (печатное издание)9783030297428
DOI
СостояниеОпубликовано - 2019
Событие3rd Conference on Creativity in Intelligent Technologies and Data Science, CIT and DS 2019 - Volgograd, Российская Федерация
Продолжительность: 16 сен 201919 сен 2019

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том1083
ISSN (печатное издание)1865-0929
ISSN (электронное издание)1865-0937

Конференция

Конференция3rd Conference on Creativity in Intelligent Technologies and Data Science, CIT and DS 2019
СтранаРоссийская Федерация
ГородVolgograd
Период16.9.1919.9.19

ASJC Scopus subject areas

  • Computer Science(all)
  • Mathematics(all)

Fingerprint Подробные сведения о темах исследования «Networkalization of network–unlike entities: How to preserve encoded information». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать