Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno's mathematical model

Результат исследований: Материалы для журналаСтатьярецензирование

63 Цитирования (Scopus)

Аннотация

A numerical study of the natural convection flow in a porous cavity with wavy bottom and top walls having sinusoidal temperature distributions on vertical walls filled with a nanofluid is numerically investigated. The mathematical model has been formulated in dimensionless stream function and temperature taking into account the Darcy-Boussinesq approximation and the Buongiorno's nanofluid model. The boundary-value problem has been solved numerically on the basis of a second-order accurate finite difference method. Efforts have been focused on the effects of five types of influential factors such as the Rayleigh (Ra=10-300) and Lewis (Le=1-1000) numbers, the buoyancy-ratio parameter (Nr=0.1-0.4), the Brownian motion parameter (Nb=0.1-0.4), and the thermophoresis parameter (Nt=0.1-0.4) on the fluid flow and heat transfer characteristics. It has been found that the average Nusselt and Sherwood numbers are increasing functions of the Rayleigh number, buoyancy-ratio parameter, and thermophoresis parameter, and decreasing functions of the Lewis number and Brownian motion parameter.

Язык оригиналаАнглийский
Номер статьи072601
ЖурналJournal of Heat Transfer
Том137
Номер выпуска7
DOI
СостояниеОпубликовано - 1 июл 2015

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Подробные сведения о темах исследования «Natural convection in a wavy porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno's mathematical model». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать