Nanostructured titanium-based materials for medical implants: Modeling and development

Leon Mishnaevsky, Evgeny Levashov, Ruslan Z. Valiev, Javier Segurado, Ilchat Sabirov, Nariman Enikeev, Sergey Prokoshkin, Andrey V. Solov'Yov, Andrey Korotitskiy, Elazar Gutmanas, Irene Gotman, Eugen Rabkin, Sergey Psakh'E, Luděk Dluhoš, Marc Seefeldt, Alexey Smolin

Результат исследований: Материалы для журналаСтатья

108 Цитирования (Scopus)

Выдержка

Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. Computational methods of nanostructure properties simulation and various approaches to the computational, "virtual" testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented.

Язык оригиналаАнглийский
Страницы (с-по)1-19
Число страниц19
ЖурналMaterials Science and Engineering R: Reports
Том81
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 2014

Отпечаток

Titanium
Micromechanics
Computational methods
Shape memory effect
Nanostructured materials
Plasticity
Analytical models
Nanostructures
Fabrication
Mechanical properties
Crystals
Testing
titanium nickelide

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Цитировать

Mishnaevsky, L., Levashov, E., Valiev, R. Z., Segurado, J., Sabirov, I., Enikeev, N., ... Smolin, A. (2014). Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering R: Reports, 81(1), 1-19. https://doi.org/10.1016/j.mser.2014.04.002

Nanostructured titanium-based materials for medical implants : Modeling and development. / Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.; Segurado, Javier; Sabirov, Ilchat; Enikeev, Nariman; Prokoshkin, Sergey; Solov'Yov, Andrey V.; Korotitskiy, Andrey; Gutmanas, Elazar; Gotman, Irene; Rabkin, Eugen; Psakh'E, Sergey; Dluhoš, Luděk; Seefeldt, Marc; Smolin, Alexey.

В: Materials Science and Engineering R: Reports, Том 81, № 1, 01.01.2014, стр. 1-19.

Результат исследований: Материалы для журналаСтатья

Mishnaevsky, L, Levashov, E, Valiev, RZ, Segurado, J, Sabirov, I, Enikeev, N, Prokoshkin, S, Solov'Yov, AV, Korotitskiy, A, Gutmanas, E, Gotman, I, Rabkin, E, Psakh'E, S, Dluhoš, L, Seefeldt, M & Smolin, A 2014, 'Nanostructured titanium-based materials for medical implants: Modeling and development', Materials Science and Engineering R: Reports, том. 81, № 1, стр. 1-19. https://doi.org/10.1016/j.mser.2014.04.002
Mishnaevsky L, Levashov E, Valiev RZ, Segurado J, Sabirov I, Enikeev N и соавт. Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering R: Reports. 2014 Янв. 1;81(1):1-19. https://doi.org/10.1016/j.mser.2014.04.002
Mishnaevsky, Leon ; Levashov, Evgeny ; Valiev, Ruslan Z. ; Segurado, Javier ; Sabirov, Ilchat ; Enikeev, Nariman ; Prokoshkin, Sergey ; Solov'Yov, Andrey V. ; Korotitskiy, Andrey ; Gutmanas, Elazar ; Gotman, Irene ; Rabkin, Eugen ; Psakh'E, Sergey ; Dluhoš, Luděk ; Seefeldt, Marc ; Smolin, Alexey. / Nanostructured titanium-based materials for medical implants : Modeling and development. В: Materials Science and Engineering R: Reports. 2014 ; Том 81, № 1. стр. 1-19.
@article{23b70932d07844658c6ddc40b1ea963c,
title = "Nanostructured titanium-based materials for medical implants: Modeling and development",
abstract = "Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. Computational methods of nanostructure properties simulation and various approaches to the computational, {"}virtual{"} testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented.",
keywords = "Computational modeling, Medical implants, Nitinol, Severe plastic deformation, Thermomechanical processing, Ultrafine grained titanium",
author = "Leon Mishnaevsky and Evgeny Levashov and Valiev, {Ruslan Z.} and Javier Segurado and Ilchat Sabirov and Nariman Enikeev and Sergey Prokoshkin and Solov'Yov, {Andrey V.} and Andrey Korotitskiy and Elazar Gutmanas and Irene Gotman and Eugen Rabkin and Sergey Psakh'E and Luděk Dluhoš and Marc Seefeldt and Alexey Smolin",
year = "2014",
month = "1",
day = "1",
doi = "10.1016/j.mser.2014.04.002",
language = "English",
volume = "81",
pages = "1--19",
journal = "Materials Science and Engineering: R: Reports",
issn = "0927-796X",
publisher = "Elsevier BV",
number = "1",

}

TY - JOUR

T1 - Nanostructured titanium-based materials for medical implants

T2 - Modeling and development

AU - Mishnaevsky, Leon

AU - Levashov, Evgeny

AU - Valiev, Ruslan Z.

AU - Segurado, Javier

AU - Sabirov, Ilchat

AU - Enikeev, Nariman

AU - Prokoshkin, Sergey

AU - Solov'Yov, Andrey V.

AU - Korotitskiy, Andrey

AU - Gutmanas, Elazar

AU - Gotman, Irene

AU - Rabkin, Eugen

AU - Psakh'E, Sergey

AU - Dluhoš, Luděk

AU - Seefeldt, Marc

AU - Smolin, Alexey

PY - 2014/1/1

Y1 - 2014/1/1

N2 - Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. Computational methods of nanostructure properties simulation and various approaches to the computational, "virtual" testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented.

AB - Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. Computational methods of nanostructure properties simulation and various approaches to the computational, "virtual" testing and numerical optimization of these materials are discussed. Applications of atomistic methods, continuum micromechanics and crystal plasticity as well as analytical models to the analysis of the reserves of the improvement of materials for medical implants are demonstrated. Examples of successful development of a nanomaterial-based medical implants are presented.

KW - Computational modeling

KW - Medical implants

KW - Nitinol

KW - Severe plastic deformation

KW - Thermomechanical processing

KW - Ultrafine grained titanium

UR - http://www.scopus.com/inward/record.url?scp=84901291375&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901291375&partnerID=8YFLogxK

U2 - 10.1016/j.mser.2014.04.002

DO - 10.1016/j.mser.2014.04.002

M3 - Article

AN - SCOPUS:84901291375

VL - 81

SP - 1

EP - 19

JO - Materials Science and Engineering: R: Reports

JF - Materials Science and Engineering: R: Reports

SN - 0927-796X

IS - 1

ER -