Multi-level image thresholding based on modified spherical search optimizer and fuzzy entropy

Husein S.Naji Alwerfali, Mohammed A.A. Al-qaness, Mohamed Abd Elaziz, Ahmed A. Ewees, Diego Oliva, Songfeng Lu

Результат исследований: Материалы для журналаСтатьярецензирование

4 Цитирования (Scopus)

Аннотация

Multi-level thresholding is one of the effective segmentation methods that have been applied in many applications. Traditional methods face challenges in determining the suitable thresholdvalues;therefore,metaheuristic(MH)methods have been adopted to solve these challenges. In general, MH methods had been proposed by simulating natural behaviors of swarm ecosystems, suchasbirds,animals,andothers. The current study proposes an alternative multi-level thresholding method based on a new MH method,a modified spherical search optimizer(SSO).Thiswasperformed by using the operators of the sine cosine algorithm (SCA) to enhance the exploitation ability of the SSO. Moreover, Fuzzy entropy is applied as the main fitness function to evaluate the quality of each solution inside the population of the proposed SSOSCA since Fuzzy entropy has established its performance in literature. Several images from the well-known Berkeley dataset were used to test and evaluate the proposed method. The evaluation outcomes approved that SSOSCA showed better performance than several existing methods according to different image segmentation measures.

Язык оригиналаАнглийский
Номер статьи328
ЖурналEntropy
Том22
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мар 2020
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Multi-level image thresholding based on modified spherical search optimizer and fuzzy entropy». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать