Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation

Albert R. Muslimov, Alexander S. Timin, Aleksandra V. Petrova, Olga S. Epifanovskaya, Alena I. Shakirova, Kirill V. Lepik, Andrey Gorshkov, Eugenia V. Il'Inskaja, Andrey V. Vasin, Boris V. Afanasyev, Boris Fehse, Gleb B. Sukhorukov

Результат исследований: Материалы для журналаСтатья

10 Цитирования (Scopus)

Аннотация

Stem cell engineering - the manipulation and functionalization of stem cells involving genetic modification - can significantly expand their applicability for cell therapy in humans. Toward this aim, reliable, standardized, and cost-effective methods for cell manipulation are required. Here we explore the potential of magnetic multilayer capsules to serve as a universal platform for nonviral gene transfer, stem cell magnetization, and magnetic cell separation to improve gene transfer efficiency. In particular, the following experiments were performed: (i) a study of the process of internalization of magnetic capsules into stem cells, including capsule co-localization with established markers of endo-lysosomal pathway; (ii) characterization and quantification of capsule uptake with confocal microscopy, electron microscopy, and flow cytometry; (iii) intracellular delivery of messenger RNA and separation of gene-modified cells by magnetic cell sorting (MACS); and (iv) analysis of the influence of capsules on cell proliferation potential. Importantly, based on the internalization of magnetic capsules, transfected cells became susceptible to external magnetic fields, which made it easy to enrich gene-modified cells using MACS (purity ∼95%), and also to influence their migration behavior. In summary, our results underline the high potential of magnetic capsules in stem cell functionalization, namely (i) to increase gene-transfer efficiency and (ii) to facilitate enrichment and targeting of transfected cells. Finally, we did not observe a negative impact of the capsules used on the proliferative capacity of stem cells, proving their high biocompatibility.

Язык оригиналаАнглийский
Страницы (с-по)2314-2324
Число страниц11
ЖурналACS Biomaterials Science and Engineering
Том3
Номер выпуска10
DOI
СостояниеОпубликовано - 9 окт 2017

    Fingerprint

ASJC Scopus subject areas

  • Biomaterials
  • Biomedical Engineering

Цитировать

Muslimov, A. R., Timin, A. S., Petrova, A. V., Epifanovskaya, O. S., Shakirova, A. I., Lepik, K. V., Gorshkov, A., Il'Inskaja, E. V., Vasin, A. V., Afanasyev, B. V., Fehse, B., & Sukhorukov, G. B. (2017). Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation. ACS Biomaterials Science and Engineering, 3(10), 2314-2324. https://doi.org/10.1021/acsbiomaterials.7b00482