Mathematical modeling of convective-conductive heat transfer in a rectangular domain in a conjugate statement

Результат исследований: Материалы для журналаСтатьярецензирование

5 Цитирования (Scopus)

Аннотация

The results of mathematical modeling of convection of a viscous incompressible liquid in a rectangular domain with sources of mass input and output are presented. A conjugate statement within the framework of the Boussinesq approximation is used. The regimes of forced and mixed convection in a domain have been investigated. The domain has two vertical walls and one horizontal wall of finite thickness, two zones of liquid input and output, and a free surface. A plane nonstationary problem within the framework of the Navier-Stokes model for the liquid phase and the heat conduction equation for the solid phase are considered. The distributions of the hydrodynamic parameters and temperatures characterizing the main regularities of the processes under investigation have been obtained. Circulation flows have been identified. The vortex formation mechanism and the temperature distribution in the solution domain under the regimes of forced and mixed convection and different locations of mass input and output zones have been analyzed. It has been found that natural convection should be taken into account when modeling convective heat transfer with Gr number values from 10 5 and higher.

Язык оригиналаАнглийский
Страницы (с-по)270-275
Число страниц6
ЖурналJournal of Engineering Thermophysics
Том16
Номер выпуска4
DOI
СостояниеОпубликовано - 1 дек 2007

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Modelling and Simulation
  • Condensed Matter Physics
  • Environmental Engineering

Fingerprint Подробные сведения о темах исследования «Mathematical modeling of convective-conductive heat transfer in a rectangular domain in a conjugate statement». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать