Machine Learning Clustering of Reservoir Heterogeneity with Petrophysicaland Production Data

Dmitry Konoshonkin, Gleb Shishaev, Ivan Matveev, Aleksandra Volkova, Valeriy Rukavishnikov, Vasily Demyanov, Boris Belozerov

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

Аннотация

Reservoir development decisions strongly depend on our understanding on reservoir heterogeneity, which isoften subject to sparse and conflicting data, interpretational bias and constraints imposed by the modellingassumptions. The work tackles a challenging task of accurately and quickly identifying and describinguncertainty in the spatial distribution of reservoir heterogeneity derived from geological well data and withrespect to a geological concept. We propose a metric based machine-learning approach to identify anddescribe spatial trends in reservoir heterogeneity/facies property distribution using wireline and productiondata. We demonstrate how the proposed method can help to partition reservoir heterogeneity and discover andverify spatial trends for a real mature producing field in the Western Siberia. The obtained clustering ofreservoir facies based on the wireline logs (alpha-SP) demonstrated a good agreement with the reservoirzonation based on manual log interpretation and the geological concept. Clustering based on individualwell production profiles has confirmed the reservoir partitioning and matched some of the reservoir featuresaligned with the prevailing geological concept. The outcome of the proposed method helps to improve thefacies distribution model by integrating the discovered spatial trends into a geostatistical model and accountfor uncertainty in the depositional scenario that is difficult to quantify based on manual interpretation.

Язык оригиналаАнглийский
Название основной публикацииSociety of Petroleum Engineers - SPE Europec Featured at 82nd EAGE Conference and Exhibition
ИздательSociety of Petroleum Engineers (SPE)
ISBN (электронное издание)9781613997123
СостояниеОпубликовано - 2020
СобытиеSPE Europec Featured at 82nd EAGE Conference and Exhibition - Amsterdam, Нидерланды
Продолжительность: 8 дек 202011 дек 2020

Серия публикаций

НазваниеSociety of Petroleum Engineers - SPE Europec Featured at 82nd EAGE Conference and Exhibition

Конференция

КонференцияSPE Europec Featured at 82nd EAGE Conference and Exhibition
СтранаНидерланды
ГородAmsterdam
Период8.12.2011.12.20

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology

Fingerprint Подробные сведения о темах исследования «Machine Learning Clustering of Reservoir Heterogeneity with Petrophysicaland Production Data». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Konoshonkin, D., Shishaev, G., Matveev, I., Volkova, A., Rukavishnikov, V., Demyanov, V., & Belozerov, B. (2020). Machine Learning Clustering of Reservoir Heterogeneity with Petrophysicaland Production Data. В Society of Petroleum Engineers - SPE Europec Featured at 82nd EAGE Conference and Exhibition (Society of Petroleum Engineers - SPE Europec Featured at 82nd EAGE Conference and Exhibition). Society of Petroleum Engineers (SPE).