Investigating crowdsourcing as a method to collect emotion labels for images

Olga Korovina, Fabio Casati, Marcos Baez, Olga Berestneva, Radoslaw Nielek

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

2 Цитирования (Scopus)

Аннотация

Labeling images is essential towards enabling the search and organization of digital media. This is true for both "factual", objective tags such as time, place and people, as well as for subjective, such as the emotion. Indeed, the ability to associate emotions to images is one of the key functionality most image analysis services today strive to provide. In this paper we study how emotion labels for images can be crowdsourced and uncover limitations of the approach commonly used to gather training data today, that of harvesting images and tags from social media.

Язык оригиналаАнглийский
Название основной публикацииCHI 2018 - Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems
Подзаголовок основной публикацииEngage with CHI
ИздательAssociation for Computing Machinery
ISBN (электронное издание)9781450356206, 9781450356213
DOI
СостояниеОпубликовано - 20 апр 2018
Событие2018 CHI Conference on Human Factors in Computing Systems, CHI EA 2018 - Montreal, Канада
Продолжительность: 21 апр 201826 апр 2018

Серия публикаций

НазваниеConference on Human Factors in Computing Systems - Proceedings
Том2018-April

Конференция

Конференция2018 CHI Conference on Human Factors in Computing Systems, CHI EA 2018
СтранаКанада
ГородMontreal
Период21.4.1826.4.18

ASJC Scopus subject areas

  • Software
  • Human-Computer Interaction
  • Computer Graphics and Computer-Aided Design

Fingerprint Подробные сведения о темах исследования «Investigating crowdsourcing as a method to collect emotion labels for images». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать