Аннотация
In this paper we study integral estimates of derivatives of conformal mappings φ:D→Ω of the unit disc D⊂C onto bounded domains Ω that satisfy the Ahlfors condition. These integral estimates lead to estimates of constants in Sobolev–Poincaré inequalities, and by the Rayleigh quotient we obtain spectral estimates of the Neumann–Laplace operator in non-Lipschitz domains (quasidiscs) in terms of the (quasi)conformal geometry of the domains. Specifically, the lower estimates of the first non-trivial eigenvalues of the Neumann–Laplace operator in some fractal type domains (snowflakes) were obtained.
Язык оригинала | Английский |
---|---|
Страницы (с-по) | 19-39 |
Число страниц | 21 |
Журнал | Journal of Mathematical Analysis and Applications |
Том | 463 |
Номер выпуска | 1 |
DOI | |
Состояние | Опубликовано - 1 июл 2018 |
ASJC Scopus subject areas
- Analysis
- Applied Mathematics