Influence of the temperature and strain rate on the evolution of the dislocation structure of a dispersion-hardened material with FCC matrix

O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, N. A. Kulaeva, M. E. Semenov

Результат исследований: Материалы для журналаСтатья

9 Цитирования (Scopus)

Выдержка

A mathematical model of plastic strain in monocrystals of dispersion-hardened FCC materials with nanosize particles of the second phase is used to investigate the influence of the temperature and strain rate on the behavior of the material and evolution of its dislocation subsystem. It is established that the curves of the temperature dependence of work hardening and density of various dislocation subsystem components for materials with different (aluminum, copper, and nickel) matrices differ insignificantly.

Язык оригиналаАнглийский
Страницы (с-по)989-993
Число страниц5
ЖурналRussian Physics Journal
Том54
Номер выпуска9
DOI
СостояниеОпубликовано - фев 2012

Отпечаток

strain rate
work hardening
matrices
mathematical models
plastics
nickel
aluminum
copper
temperature dependence
temperature
single crystals
curves

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Цитировать

Influence of the temperature and strain rate on the evolution of the dislocation structure of a dispersion-hardened material with FCC matrix. / Daneyko, O. I.; Kovalevskaya, T. A.; Kolupaeva, S. N.; Kulaeva, N. A.; Semenov, M. E.

В: Russian Physics Journal, Том 54, № 9, 02.2012, стр. 989-993.

Результат исследований: Материалы для журналаСтатья

Daneyko, O. I. ; Kovalevskaya, T. A. ; Kolupaeva, S. N. ; Kulaeva, N. A. ; Semenov, M. E. / Influence of the temperature and strain rate on the evolution of the dislocation structure of a dispersion-hardened material with FCC matrix. В: Russian Physics Journal. 2012 ; Том 54, № 9. стр. 989-993.
@article{2231275407564108bfa8929ab5a3651d,
title = "Influence of the temperature and strain rate on the evolution of the dislocation structure of a dispersion-hardened material with FCC matrix",
abstract = "A mathematical model of plastic strain in monocrystals of dispersion-hardened FCC materials with nanosize particles of the second phase is used to investigate the influence of the temperature and strain rate on the behavior of the material and evolution of its dislocation subsystem. It is established that the curves of the temperature dependence of work hardening and density of various dislocation subsystem components for materials with different (aluminum, copper, and nickel) matrices differ insignificantly.",
keywords = "dislocations, dispersion-hardened materials, mathematical modeling, nanoparticles, plastic strain",
author = "Daneyko, {O. I.} and Kovalevskaya, {T. A.} and Kolupaeva, {S. N.} and Kulaeva, {N. A.} and Semenov, {M. E.}",
year = "2012",
month = "2",
doi = "10.1007/s11182-012-9707-7",
language = "English",
volume = "54",
pages = "989--993",
journal = "Russian Physics Journal",
issn = "1064-8887",
publisher = "Consultants Bureau",
number = "9",

}

TY - JOUR

T1 - Influence of the temperature and strain rate on the evolution of the dislocation structure of a dispersion-hardened material with FCC matrix

AU - Daneyko, O. I.

AU - Kovalevskaya, T. A.

AU - Kolupaeva, S. N.

AU - Kulaeva, N. A.

AU - Semenov, M. E.

PY - 2012/2

Y1 - 2012/2

N2 - A mathematical model of plastic strain in monocrystals of dispersion-hardened FCC materials with nanosize particles of the second phase is used to investigate the influence of the temperature and strain rate on the behavior of the material and evolution of its dislocation subsystem. It is established that the curves of the temperature dependence of work hardening and density of various dislocation subsystem components for materials with different (aluminum, copper, and nickel) matrices differ insignificantly.

AB - A mathematical model of plastic strain in monocrystals of dispersion-hardened FCC materials with nanosize particles of the second phase is used to investigate the influence of the temperature and strain rate on the behavior of the material and evolution of its dislocation subsystem. It is established that the curves of the temperature dependence of work hardening and density of various dislocation subsystem components for materials with different (aluminum, copper, and nickel) matrices differ insignificantly.

KW - dislocations

KW - dispersion-hardened materials

KW - mathematical modeling

KW - nanoparticles

KW - plastic strain

UR - http://www.scopus.com/inward/record.url?scp=84857140740&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84857140740&partnerID=8YFLogxK

U2 - 10.1007/s11182-012-9707-7

DO - 10.1007/s11182-012-9707-7

M3 - Article

AN - SCOPUS:84857140740

VL - 54

SP - 989

EP - 993

JO - Russian Physics Journal

JF - Russian Physics Journal

SN - 1064-8887

IS - 9

ER -