Improved robust model selection methods for a Lévy nonparametric regression in continuous time

E. A. Pchelintsev, V. A. Pchelintsev, S. M. Pergamenshchikov

Результат исследований: Материалы для журналаСтатья

1 Цитирования (Scopus)

Аннотация

In this paper, we develop the James–Stein improved method for the estimation problem of a nonparametric periodic function observed with Lévy noises in continuous time. An adaptive model selection procedure based on the weighted improved least squares estimates is constructed. The improvement effect for nonparametric models is studied. It turns out that in non-asymptotic setting the accuracy improvement for nonparametric models is more important than for parametric ones. Moreover, sharp oracle inequalities for the robust risks have been shown and the adaptive efficiency property for the proposed procedures has been established. The numerical simulations are given.

Язык оригиналаАнглийский
ЖурналJournal of Nonparametric Statistics
DOI
СостояниеОпубликовано - 1 янв 2019

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Fingerprint Подробные сведения о темах исследования «Improved robust model selection methods for a Lévy nonparametric regression in continuous time». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать