Improved extended Hamiltonian and search for local symmetries

A. A. Deriglazov

Результат исследований: Материалы для журналаСтатьярецензирование

6 Цитирования (Scopus)


We analyze a structure of the singular Lagrangian L with first and second class constraints of an arbitrary stage. We show that there exist an equivalent Lagrangian (called the extended Lagrangian L̃) that generates all the original constraints on second stage of the Dirac-Bergmann procedure. The extended Lagrangian is obtained in closed form through the initial one. The formalism implies an extension of the original configuration space by auxiliary variables. Some of them are identified with gauge fields supplying local symmetries of L̃. As an application of the formalism, we found closed expression for the gauge generators of L̃ through the first class constraints. It turns out to be much more easy task as those for L. All the first class constraints of L turn out to be the gauge symmetry generators of L̃. By this way, local symmetries of L with higher order derivatives of the local parameters decompose into a sum of the gauge symmetries of L̃.

Язык оригиналаАнглийский
Номер статьи012907
ЖурналJournal of Mathematical Physics
Номер выпуска1
СостояниеОпубликовано - 2009

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Подробные сведения о темах исследования «Improved extended Hamiltonian and search for local symmetries». Вместе они формируют уникальный семантический отпечаток (fingerprint).