Heart Disease Dataset Clusterization

Polina Dudchenko, Aleksei Dudchenko, Georgy Kopanitsa

Результат исследований: Материалы для журналаСтатья


Clusterization is a promising group of methods in the context of patient similarity. However, results of clustering are not often clear for physicians as well as different clustering methods can produce different results. We have examined a well-known dataset and implemented 3 clustering methods (k-means, Agglomerative and Spectral). We have compared and evaluated clusters and their correlation with data attributes. In contrast to original dataset's target value, the clusters correlated with only a few attributes. Finally, we train 2 predictive models based on k-nearest neighbors (KNN) algorithm and Artificial Neural Network (ANN). Models evaluation demonstrates that using the results of clustering algorithms as predictive attribute give a higher F-score than the original target attribute.

Язык оригиналаАнглийский
Страницы (с-по)162-167
Число страниц6
ЖурналStudies in Health Technology and Informatics
СостояниеОпубликовано - 1 янв 2019
Опубликовано для внешнего пользованияДа

ASJC Scopus subject areas

  • Biomedical Engineering
  • Health Informatics
  • Health Information Management

Fingerprint Подробные сведения о темах исследования «Heart Disease Dataset Clusterization». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Dudchenko, P., Dudchenko, A., & Kopanitsa, G. (2019). Heart Disease Dataset Clusterization. Studies in Health Technology and Informatics, 261, 162-167.