Generalized confluent hypergeometric solutions of the Heun confluent equation

T. A. Ishkhanyan, A. M. Ishkhanyan

Результат исследований: Материалы для журналаСтатья

3 Цитирования (Scopus)

Выдержка

We show that the Heun confluent equation admits infinitely many solutions in terms of the confluent generalized hypergeometric functions. For each of these solutions a characteristic exponent of a regular singularity of the Heun confluent equation is a non-zero integer and the accessory parameter obeys a polynomial equation. Each of the solutions can be written as a linear combination with constant coefficients of a finite number of either the Kummer confluent hypergeometric functions or the Bessel functions.

Язык оригиналаАнглийский
Страницы (с-по)624-630
Число страниц7
ЖурналApplied Mathematics and Computation
Том338
DOI
СостояниеОпубликовано - 1 дек 2018

Отпечаток

Confluent Hypergeometric Function
Generalized Hypergeometric Function
Characteristic Exponents
Infinitely Many Solutions
Polynomial equation
Bessel Functions
Linear Combination
Bessel functions
Accessories
Singularity
Integer
Coefficient
Polynomials

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics

Цитировать

Generalized confluent hypergeometric solutions of the Heun confluent equation. / Ishkhanyan, T. A.; Ishkhanyan, A. M.

В: Applied Mathematics and Computation, Том 338, 01.12.2018, стр. 624-630.

Результат исследований: Материалы для журналаСтатья

Ishkhanyan, T. A. ; Ishkhanyan, A. M. / Generalized confluent hypergeometric solutions of the Heun confluent equation. В: Applied Mathematics and Computation. 2018 ; Том 338. стр. 624-630.
@article{7ee087e048744bf0ae106144d3531426,
title = "Generalized confluent hypergeometric solutions of the Heun confluent equation",
abstract = "We show that the Heun confluent equation admits infinitely many solutions in terms of the confluent generalized hypergeometric functions. For each of these solutions a characteristic exponent of a regular singularity of the Heun confluent equation is a non-zero integer and the accessory parameter obeys a polynomial equation. Each of the solutions can be written as a linear combination with constant coefficients of a finite number of either the Kummer confluent hypergeometric functions or the Bessel functions.",
keywords = "02.30.Gp Special functions, 02.30.Hq Ordinary differential equations, 02.30.Mv Approximations and expansions, Bessel function, Confluent Heun equation, Confluent hypergeometric function, Recurrence relation",
author = "Ishkhanyan, {T. A.} and Ishkhanyan, {A. M.}",
year = "2018",
month = "12",
day = "1",
doi = "10.1016/j.amc.2018.06.053",
language = "English",
volume = "338",
pages = "624--630",
journal = "Applied Mathematics and Computation",
issn = "0096-3003",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Generalized confluent hypergeometric solutions of the Heun confluent equation

AU - Ishkhanyan, T. A.

AU - Ishkhanyan, A. M.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - We show that the Heun confluent equation admits infinitely many solutions in terms of the confluent generalized hypergeometric functions. For each of these solutions a characteristic exponent of a regular singularity of the Heun confluent equation is a non-zero integer and the accessory parameter obeys a polynomial equation. Each of the solutions can be written as a linear combination with constant coefficients of a finite number of either the Kummer confluent hypergeometric functions or the Bessel functions.

AB - We show that the Heun confluent equation admits infinitely many solutions in terms of the confluent generalized hypergeometric functions. For each of these solutions a characteristic exponent of a regular singularity of the Heun confluent equation is a non-zero integer and the accessory parameter obeys a polynomial equation. Each of the solutions can be written as a linear combination with constant coefficients of a finite number of either the Kummer confluent hypergeometric functions or the Bessel functions.

KW - 02.30.Gp Special functions

KW - 02.30.Hq Ordinary differential equations

KW - 02.30.Mv Approximations and expansions

KW - Bessel function

KW - Confluent Heun equation

KW - Confluent hypergeometric function

KW - Recurrence relation

UR - http://www.scopus.com/inward/record.url?scp=85049789635&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049789635&partnerID=8YFLogxK

U2 - 10.1016/j.amc.2018.06.053

DO - 10.1016/j.amc.2018.06.053

M3 - Article

AN - SCOPUS:85049789635

VL - 338

SP - 624

EP - 630

JO - Applied Mathematics and Computation

JF - Applied Mathematics and Computation

SN - 0096-3003

ER -