General model selection estimation of a periodic regression with a Gaussian noise

Victor Konev, Serguei Pergamenchtchikov

    Результат исследований: Материалы для журналаСтатьярецензирование

    8 Цитирования (Scopus)


    This paper considers the problem of estimating a periodic function in a continuous time regression model with an additive stationary Gaussian noise having unknown correlation function. A general model selection procedure on the basis of arbitrary projective estimates, which does not need the knowledge of the noise correlation function, is proposed. A non-asymptotic upper bound for ℒ2-risk (oracle inequality) has been derived under mild conditions on the noise. For the Ornstein-Uhlenbeck noise the risk upper bound is shown to be uniform in the nuisance parameter. In the case of Gaussian white noise the constructed procedure has some advantages as compared with the procedure based on the least squares estimates (LSE). The asymptotic minimaxity of the estimates has been proved. The proposed model selection scheme is extended also to the estimation problem based on the discrete data applicably to the situation when high frequency sampling can not be provided.

    Язык оригиналаАнглийский
    Страницы (с-по)1083-1111
    Число страниц29
    ЖурналAnnals of the Institute of Statistical Mathematics
    Номер выпуска6
    СостояниеОпубликовано - дек 2010

    ASJC Scopus subject areas

    • Statistics and Probability

    Fingerprint Подробные сведения о темах исследования «General model selection estimation of a periodic regression with a Gaussian noise». Вместе они формируют уникальный семантический отпечаток (fingerprint).