Evolution of initial distributions with one and two centers in a two-dimensional model of the reaction-diffusion type with a nonlocal interaction of finite radius

Результат исследований: Материалы для журналаСтатья

5 Цитирования (Scopus)

Аннотация

Solutions of a generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation for a nonlocal interaction of finite radius have been constructed for initial conditions with one and two localization centers by using numerical methods. The dynamics depends on the choice of the equation parameters and initial conditions. The processes of formation and interaction of the rings expanding from each of the two localization centers and the formation of dissipative structures are considered.

Язык оригиналаАнглийский
Страницы (с-по)32-38
Число страниц7
ЖурналRussian Physics Journal
Том54
Номер выпуска1
DOI
СостояниеОпубликовано - июн 2011

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Подробные сведения о темах исследования «Evolution of initial distributions with one and two centers in a two-dimensional model of the reaction-diffusion type with a nonlocal interaction of finite radius». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать