Equivalence between different classical treatments of the O(N) nonlinear sigma model and their functional Schrödinger equations

A. A. Deriglazov, W. Oliveira, G. Oliveira-Neto

Результат исследований: Материалы для журналаСтатья

3 Цитирования (Scopus)

Аннотация

In this work we derive the Hamiltonian formalism of the O(N) nonlinear sigma model in its original version as a second-class constrained field theory and then as a first-class constrained field theory. We treat the model as a second-class constrained field theory by two different methods: the unconstrained and the Dirac second-class formalisms. We show that the Hamiltonians for all these versions of the model are equivalent. Then, for a particular factor-ordering choice, we write the functional Schrödinger equation for each derived Hamiltonian. We show that they are all identical which justifies our factor-ordering choice and opens the way for a future quantization of the model via the functional Schrödinger representation.

Язык оригиналаАнглийский
Страницы (с-по)755-766
Число страниц12
ЖурналInternational Journal of Modern Physics A
Том18
Номер выпуска5
DOI
СостояниеОпубликовано - 20 фев 2003

ASJC Scopus subject areas

  • Mathematical Physics
  • Physics and Astronomy(all)
  • Nuclear and High Energy Physics

Fingerprint Подробные сведения о темах исследования «Equivalence between different classical treatments of the O(N) nonlinear sigma model and their functional Schrödinger equations». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать