Dynamic word recommendation to obtain diverse crowdsourced paraphrases of user utterances

Mohammad Ali Yaghoub-Zadeh-Fard, Boualem Benatallah, Fabio Casati, Moshe Chai Barukh, Shayan Zamanirad

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

2 Цитирования (Scopus)

Аннотация

Building task-oriented bots requires mapping a user utterance to an intent with its associated entities to serve the request. Doing so is not easy since it requires large quantities of high-quality and diverse training data to learn how to map all possible variations of utterances with the same intent. Crowdsourcing may be an effective, inexpensive, and scalable technique for collecting such large datasets. However, the diversity of the results suffers from the priming effect (i.e. workers are more likely to use the words in the sentence we are asking to paraphrase). In this paper, we leverage priming as an opportunity rather than a threat: we dynamically generate word suggestions to motivate crowd workers towards producing diverse utterances. The key challenge is to make suggestions that can improve diversity without resulting in semantically invalid paraphrases. To achieve this, we propose a probabilistic model that generates continuously improved versions of word suggestions that balance diversity and semantic relevance. Our experiments show that the proposed approach improves the diversity of crowdsourced paraphrases.

Язык оригиналаАнглийский
Название основной публикацииProceedings of the 25th International Conference on Intelligent User Interfaces, IUI 2020
ИздательAssociation for Computing Machinery
Страницы55-66
Число страниц12
ISBN (электронное издание)9781450371186
DOI
СостояниеОпубликовано - 17 мар 2020
Опубликовано для внешнего пользованияДа
Событие25th ACM International Conference on Intelligent User Interfaces, IUI 2020 - Cagliari, Италия
Продолжительность: 17 мар 202020 мар 2020

Серия публикаций

НазваниеInternational Conference on Intelligent User Interfaces, Proceedings IUI

Конференция

Конференция25th ACM International Conference on Intelligent User Interfaces, IUI 2020
СтранаИталия
ГородCagliari
Период17.3.2020.3.20

ASJC Scopus subject areas

  • Software
  • Human-Computer Interaction

Fingerprint Подробные сведения о темах исследования «Dynamic word recommendation to obtain diverse crowdsourced paraphrases of user utterances». Вместе они формируют уникальный семантический отпечаток (fingerprint).

Цитировать