Dealing with chaotic results of Kemeny ranking determination

Результат исследований: Материалы для журналаСтатья

14 Цитирования (Scopus)

Аннотация

Multidimensional ordinal measurement in a form of problem of a single consensus ranking determination for m rankings of n alternatives is considered in the paper. The Kemeny rule is one of deeply justified ways to solve the problem allowing to find such a linear order (Kemeny ranking) of alternatives that a distance (defined in terms of a number of pair-wise disagreements between rankings) from it to the initial rankings is minimal. But computational experiments outcomes show that the approach can give considerably more than one optimal solutions what argues instability of the measurement procedure. Hence, special efforts to avoid this phenomenon are needed.

Язык оригиналаАнглийский
Страницы (с-по)328-334
Число страниц7
ЖурналMeasurement: Journal of the International Measurement Confederation
Том51
Номер выпуска1
DOI
СостояниеОпубликовано - 1 янв 2014

ASJC Scopus subject areas

  • Statistics and Probability
  • Education
  • Condensed Matter Physics
  • Applied Mathematics

Fingerprint Подробные сведения о темах исследования «Dealing with chaotic results of Kemeny ranking determination». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать