Curved WDVV equation and supersymmetric mechanics

N. Kozyrev, S. Krivonos, O. Lechtenfeld, A. Nersessian, A. Sutulin

    Результат исследований: Материалы для журнала

    Выдержка

    We extend the relation between the Witten-Dijkgraaf-Verlinde-Verlinde equation and N = 4 supersymmetric mechanics to arbitrary curved spaces. The resulting curved WDVV equation is written in terms of the third rank Codazzi tensor. We provide the solutions of the curved WDVV equation for the so(n) symmetric conformally flat metrics. We also explicitly demonstrate how each solution of the flat WDVV equation can be lifted up to the curved WDVV solution on the conformally flat spaces.

    Язык оригиналаАнглийский
    Номер статьи012026
    ЖурналJournal of Physics: Conference Series
    Том965
    Номер выпуска1
    DOI
    СостояниеОпубликовано - 15 фев 2018
    Событие25th International Conference on Integrable Systems and Quantum Symmetries, ISQS 2017 - Prague, Чешская Республика
    Продолжительность: 6 июн 201710 июн 2017

    Отпечаток

    tensors

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Цитировать

    Kozyrev, N., Krivonos, S., Lechtenfeld, O., Nersessian, A., & Sutulin, A. (2018). Curved WDVV equation and supersymmetric mechanics. Journal of Physics: Conference Series, 965(1), [012026]. https://doi.org/10.1088/1742-6596/965/1/012026

    Curved WDVV equation and supersymmetric mechanics. / Kozyrev, N.; Krivonos, S.; Lechtenfeld, O.; Nersessian, A.; Sutulin, A.

    В: Journal of Physics: Conference Series, Том 965, № 1, 012026, 15.02.2018.

    Результат исследований: Материалы для журнала

    Kozyrev, N, Krivonos, S, Lechtenfeld, O, Nersessian, A & Sutulin, A 2018, 'Curved WDVV equation and supersymmetric mechanics', Journal of Physics: Conference Series, том. 965, № 1, 012026. https://doi.org/10.1088/1742-6596/965/1/012026
    Kozyrev N, Krivonos S, Lechtenfeld O, Nersessian A, Sutulin A. Curved WDVV equation and supersymmetric mechanics. Journal of Physics: Conference Series. 2018 Февр. 15;965(1). 012026. https://doi.org/10.1088/1742-6596/965/1/012026
    Kozyrev, N. ; Krivonos, S. ; Lechtenfeld, O. ; Nersessian, A. ; Sutulin, A. / Curved WDVV equation and supersymmetric mechanics. В: Journal of Physics: Conference Series. 2018 ; Том 965, № 1.
    @article{b8ae1567cb4e4f1c8d04691a2231ff2d,
    title = "Curved WDVV equation and supersymmetric mechanics",
    abstract = "We extend the relation between the Witten-Dijkgraaf-Verlinde-Verlinde equation and N = 4 supersymmetric mechanics to arbitrary curved spaces. The resulting curved WDVV equation is written in terms of the third rank Codazzi tensor. We provide the solutions of the curved WDVV equation for the so(n) symmetric conformally flat metrics. We also explicitly demonstrate how each solution of the flat WDVV equation can be lifted up to the curved WDVV solution on the conformally flat spaces.",
    author = "N. Kozyrev and S. Krivonos and O. Lechtenfeld and A. Nersessian and A. Sutulin",
    year = "2018",
    month = "2",
    day = "15",
    doi = "10.1088/1742-6596/965/1/012026",
    language = "English",
    volume = "965",
    journal = "Journal of Physics: Conference Series",
    issn = "1742-6588",
    publisher = "IOP Publishing Ltd.",
    number = "1",

    }

    TY - JOUR

    T1 - Curved WDVV equation and supersymmetric mechanics

    AU - Kozyrev, N.

    AU - Krivonos, S.

    AU - Lechtenfeld, O.

    AU - Nersessian, A.

    AU - Sutulin, A.

    PY - 2018/2/15

    Y1 - 2018/2/15

    N2 - We extend the relation between the Witten-Dijkgraaf-Verlinde-Verlinde equation and N = 4 supersymmetric mechanics to arbitrary curved spaces. The resulting curved WDVV equation is written in terms of the third rank Codazzi tensor. We provide the solutions of the curved WDVV equation for the so(n) symmetric conformally flat metrics. We also explicitly demonstrate how each solution of the flat WDVV equation can be lifted up to the curved WDVV solution on the conformally flat spaces.

    AB - We extend the relation between the Witten-Dijkgraaf-Verlinde-Verlinde equation and N = 4 supersymmetric mechanics to arbitrary curved spaces. The resulting curved WDVV equation is written in terms of the third rank Codazzi tensor. We provide the solutions of the curved WDVV equation for the so(n) symmetric conformally flat metrics. We also explicitly demonstrate how each solution of the flat WDVV equation can be lifted up to the curved WDVV solution on the conformally flat spaces.

    UR - http://www.scopus.com/inward/record.url?scp=85042934765&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85042934765&partnerID=8YFLogxK

    U2 - 10.1088/1742-6596/965/1/012026

    DO - 10.1088/1742-6596/965/1/012026

    M3 - Conference article

    AN - SCOPUS:85042934765

    VL - 965

    JO - Journal of Physics: Conference Series

    JF - Journal of Physics: Conference Series

    SN - 1742-6588

    IS - 1

    M1 - 012026

    ER -