Covers in general measurement problem

S. V. Muravyov, V. Savolainen

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

Аннотация

It is shown that in terms of the representational theory the General Measurement Problem (GMP) can be treated as discrete optimization problem. Moreover, particular discrete optimization problems appear to every stage of the GMP solution. There is a sufficiently compact family of problems that is universal to a considerable extent. They permit to manage many concrete practical tasks appearing in the arrangement of the measurement process with both quantitative and qualitative scales. It is demonstrated that these universal problems are covering problems. Several variants of these problems are discussed in context of measurement with numerical examples. This approach allows also to consider from an integrated point of view any kind of functions of measurement information systems: the check, the diagnosis and the pattern recognition.

Язык оригиналаАнглийский
Название основной публикацииConference Record - IEEE Instrumentation and Measurement Technology Conference
Место публикацииPiscataway, NJ, United States
ИздательIEEE
Страницы1237-1242
Число страниц6
Том2
СостояниеОпубликовано - 1996
СобытиеProceedings of the Joint 1996 IEEE Instrumentation and Measurement Technology Conference & IMEKO Technical Committee 7. Vol 1 (of 2) - Brussels, Belgium
Продолжительность: 4 июн 19966 июн 1996

Другое

ДругоеProceedings of the Joint 1996 IEEE Instrumentation and Measurement Technology Conference & IMEKO Technical Committee 7. Vol 1 (of 2)
ГородBrussels, Belgium
Период4.6.966.6.96

ASJC Scopus subject areas

  • Instrumentation

Fingerprint Подробные сведения о темах исследования «Covers in general measurement problem». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Muravyov, S. V., & Savolainen, V. (1996). Covers in general measurement problem. В Conference Record - IEEE Instrumentation and Measurement Technology Conference (Том 2, стр. 1237-1242). IEEE.