Computing uncertain key indicators from uncertain data

Carlos Rodríguez, Florian Daniel, Fabio Casati, Cinzia Cappiello

Результат исследований: Материалы для книги/типы отчетовМатериалы для конференции

3 Цитирования (Scopus)

Аннотация

Key indicators, such as key performance indicators or key compliance indicators are at the heart of modern business intelligence applications. Key indicators are metrics, i.e., numbers, that help an organization to measure and assess how successful it is in reaching predefined goals (e.g., lowering process execution times or increasing compliance with regulations), and typically the people looking at them simply trust the values they see when taking decisions. However, it is important to recognize that in real business environments we cannot always rely on fully trusted or certain data, yet indicators are to be computed. In this paper, we tackle the problem of computing uncertain indicators from uncertain data, we characterize the problem in a modern business scenario (combining techniques from uncertain and probabilistic data management), and we describe how we addressed and implemented the problem in a European research project.

Язык оригиналаАнглийский
Название основной публикацииProceedings of the 2009 International Conference on Information Quality, ICIQ 2009
СостояниеОпубликовано - 2009
Опубликовано для внешнего пользованияДа
Событие14th International Conference on Information Quality, ICIQ 2009 - Potsdam, Германия
Продолжительность: 7 ноя 20098 ноя 2009

Конференция

Конференция14th International Conference on Information Quality, ICIQ 2009
СтранаГермания
ГородPotsdam
Период7.11.098.11.09

ASJC Scopus subject areas

  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint Подробные сведения о темах исследования «Computing uncertain key indicators from uncertain data». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать

    Rodríguez, C., Daniel, F., Casati, F., & Cappiello, C. (2009). Computing uncertain key indicators from uncertain data. В Proceedings of the 2009 International Conference on Information Quality, ICIQ 2009