Computer-Aided Recognition of Defects in Welded Joints during Visual Inspections Based on Geometric Attributes

S. V. Muravyov, E. Yu Pogadaeva

Результат исследований: Материалы для журналаСтатья

Аннотация

Abstract: An automated defect recognition algorithm is presented for detecting and classifying weld defects by photographic images. The proposed recognition algorithm selects a defective domain in a segmented image, extracts geometric features from the image, and relates the defect to one of six classes: no defect, cavity, longitudinal crack, transverse crack, burn-through, or multiple defect. The algorithm is implemented in the Matlab 2018b MathWorks environment and has been tested on 60 photographs of defects of various classes; the accuracy of recognition was 85%.

Язык оригиналаАнглийский
Страницы (с-по)259-267
Число страниц9
ЖурналRussian Journal of Nondestructive Testing
Том56
Номер выпуска3
DOI
СостояниеОпубликовано - 1 мар 2020

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Подробные сведения о темах исследования «Computer-Aided Recognition of Defects in Welded Joints during Visual Inspections Based on Geometric Attributes». Вместе они формируют уникальный семантический отпечаток (fingerprint).

  • Цитировать